


 Introducing A Graph Database: Neo4j

 Modeling Software Structures As A Graph

 Exploring An Application Using Queries

 Live Demo #1

 Structures, Rules and Erosion

 Validation Of Conventions And Constraints

 jQAssistant

 Live Demo #2



Exploration And Verification Of Java Applications

Using A Graph Database



 Some facts

 http://www.neo4j.org

 Latest Stable Release: 2.0.1 

 Implemented in Java(!)

 Runnding embedded with native Java API…

 ….or as standalone server via REST

 Several Language Bindings, e.g. Java, JS, Ruby, PHP, .NET, …

 HA features

 Query language: Cypher

 Comprehensive documentation and online tutorials

 Community (Open source) and commercial licenses available

http://www.neo4j.org/


Exploration And Verification Of Java Applications

Using A Graph Database



 Let‘s model a Java class as a graph!



 Let‘s model a Java class as a graph!

public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}



 All we need is…

 Nodes 

 Labels 

 Properties 

 Relationships

 Modeling is just…

 Taking a pen

 Drawing the structures on a whiteboard (i.e. the database)

 We don‘t need…

 Foreign keys

 Tables and schemas

 Knowledge in graph theory



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD
DECLARES



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD
DECLARES

int

TYPE

FQN:int

OF_TYPE



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

DECLARES

int

TYPE

FQN:int

OF_TYPE



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

DECLARES

int

TYPE

FQN:int

OF_TYPE

getNumber

DECLARES



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

DECLARES

int

TYPE

FQN:int

OF_TYPE

getNumber

METHOD

DECLARES



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

DECLARES

int

TYPE

FQN:int

getNumber

METHOD

RETURNS

DECLARES

OF_TYPE



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

DECLARES

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

DECLARES

OF_TYPE



public class Customer extends Person {

private int number;

public int getNumber() {

return this.number;

}

}

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS

number

FIELD

SIGNATURE:int number
VISIBILITY:PRIVATE

DECLARES

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

DECLARES

OF_TYPE



 Elements of the „Java software graph model“

 Nodes and their labels (but without properties)

 ARTIFACT

 PACKAGE

 TYPE, CLASS, INTERFACE, ANNOTATION, ENUM

METHOD, CONSTRUCTOR, PARAMETER

 FIELD

 VALUE, CLASS, ANNOTATION, ENUM, PRIMITIVE, ARRAY

 Relationships

 CONTAINS, DECLARES

 EXTENDS, IMPLEMENTS

 RETURNS, THROWS, INVOKES, HAS

 ANNOTATED_BY, OF_TYPE





 The model is stored as at has been modeled!



 The model is stored as at has been modeled!

 Embedded API of Neo4j:



 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();



 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();

node.addLabel(MyLabels.TYPE);



 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();

node.addLabel(MyLabels.TYPE);

node.setProperty("SIGNATURE", "int number")



 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();

node.addLabel(MyLabels.TYPE);

node.setProperty("SIGNATURE", "int number")

node.createRelationshipTo(otherNode, 
MyRelations.OF_TYPE)



 The model is stored as at has been modeled!

 Embedded API of Neo4j:

Node node = graphDatabaseService.createNode();

node.addLabel(MyLabels.TYPE);

node.setProperty("SIGNATURE", "int number")

node.createRelationshipTo(otherNode, 
MyRelations.OF_TYPE)

 All operations (and even more!) also possible via
 Cypher

 REST



Exploration And Verification Of Java Applications

Using A Graph Database



 Let‘s execute a query on the graph!



 Let‘s execute a query on the graph!

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

number

FIELD
DECLARES

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

OF_TYPE

EXTENDSDECLARES



 Let‘s execute a query on the graph!

 Which class extends from another class?

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

number

FIELD
DECLARES

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

OF_TYPE

EXTENDSDECLARES



 Let‘s execute a query on the graph!

 Which class extends from another class?

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

number

FIELD
CONTAINS

int

TYPE

FQN:int

getNumber

METHOD

READSRETURNS

OF_TYPE

EXTENDS



 Let‘s execute a query on the graph!

 Which class extends from another class?

 How can we express a query on this pattern?

Customer

TYPE CLASS

FQN:com.buschmais.model.Customer
VISIBILITY:PUBLIC

Person

TYPE

FQN:com.buschmais.model.Person

EXTENDS



Customer

TYPE CLASS

Person

TYPE

EXTENDS



c1

TYPE CLASS

c2

TYPE

EXTENDS



 Let‘s convert this to ASCII art…

c1

TYPE CLASS

c2

TYPE

EXTENDS



 Let‘s convert this to ASCII art… 

 () as nodes

c1

TYPE CLASS

c2

TYPE

EXTENDS



 Let‘s convert this to ASCII art… 

 () as nodes

 -[]-> as directed relationships

c1

TYPE CLASS

c2

TYPE

EXTENDS



 Let‘s convert this to ASCII art… 

 () as nodes

 -[]-> as directed relationships

()-[]->()

c1

TYPE CLASS

c2

TYPE

EXTENDS



 Let‘s convert this to ASCII art… 

 () as nodes

 -[]-> as directed relationships

(c1)-[]->(c2)

c1

TYPE CLASS

c2

TYPE

EXTENDS



 Let‘s convert this to ASCII art… 

 () as nodes

 -[]-> as directed relationships

(c1)-[:EXTENDS]->(c2)

c1

TYPE CLASS

c2

TYPE

EXTENDS



 Let‘s convert this to ASCII art… 

 () as nodes

 -[]-> as directed relationships

(c1:CLASS)-[:EXTENDS]->(c2:TYPE)

c1

TYPE CLASS

c2

TYPE

EXTENDS



 Pattern matching is the core principle of Cypher!

c1

TYPE CLASS

c2

TYPE

EXTENDS



 Pattern matching is the core principle of Cypher!

MATCH
(c1:CLASS)-[:EXTENDS]->(c2:TYPE)

RETURN
c1.FQN, c2.FQN

c1

TYPE CLASS

c2

TYPE

EXTENDS



 Which classes contain the highest number of methods?



 Which classes contain the highest number of methods?

MATCH
(class:CLASS)-[:DECLARES]->(method:METHOD)



 Which classes contain the highest number of methods?

MATCH
(class:CLASS)-[:DECLARES]->(method:METHOD)

RETURN
class.FQN, count(method) as Methods



 Which classes contain the highest number of methods?

MATCH
(class:CLASS)-[:DECLARES]->(method:METHOD)

RETURN
class.FQN, count(method) as Methods

ORDER BY
Methods DESC



 Which classes contain the highest number of methods?

MATCH
(class:CLASS)-[:DECLARES]->(method:METHOD)

RETURN
class.FQN, count(method) as Methods

ORDER BY
Methods DESC

LIMIT 20



 Which class has the deepest inheritance hierarchy?



 Which class has the deepest inheritance hierarchy?

MATCH
h=(class:CLASS)-[:EXTENDS*]->(super:CLASS)



 Which class has the deepest inheritance hierarchy?

MATCH
h=(class:CLASS)-[:EXTENDS*]->(super:TYPE)

RETURN
class.FQN, length(h) as Depth



 Which class has the deepest inheritance hierarchy?

MATCH
h=(class:CLASS)-[:EXTENDS*]->(super:TYPE)

RETURN
class.FQN, length(h) as Depth

ORDER BY
Depth desc



 Which class has the deepest inheritance hierarchy?

MATCH
h=(class:CLASS)-[:EXTENDS*]->(super:TYPE)

RETURN
class.FQN, length(h) as Depth

ORDER BY
Depth desc

LIMIT 20



 Queries on graph structures allow…



 Queries on graph structures allow…

 Calculation of metrics, e.g.

 Classes per package, fields/methods per class

 Depth of inheritance hierarchies

 Fan in/out of artifacts, packages, classes



 Queries on graph structures allow…

 Calculation of metrics, e.g.

 Classes per package, fields/methods per class

 Depth of inheritance hierarchies

 Fan in/out of artifacts, packages, classes

 Impact-Analysis, e.g.

Which methods/classes/packages/artifacts are potentially
affected by changes on an element?



 Queries on graph structures allow…

 Calculation of metrics, e.g.

 Classes per package, fields/methods per class

 Depth of inheritance hierarchies

 Fan in/out of artifacts, packages, classes

 Impact-Analysis, e.g.

Which methods/classes/packages/artifacts are potentially
affected by changes on a class, method or field?

 Validation of constraints and conventions, e.g.

 Naming rules

 Cyclic dependencies (types, packages)

 Internal and external dependencies

 Modules

 Frameworks and libraries



Exploration And Verification Of Java Applications

Using A Graph Database



Exploration And Verification Of Java Applications

Using A Graph Database



 At the beginning of a new project…

 Draft of the application architecture

 Definition of conventions and constraints

Modules, layers, internal and external dependencies

 Naming rules

 Initial setup of the project structure



 At the beginning of a new project…

 Draft of the application architecture

 Definition of conventions and constraints

Modules, layers, internal and external dependencies

 Naming rules

 Initial setup of the project structure

 Goals

 Breaking down complexity of problems

 „Accessibility“ for developers

 Similar structures and approaches for similar problems



 Sketch of an architecture



 Sketch of an architecture

My Big Fat Shopping Application



 Sketch of an architecture

 Business modules

Shopping CartUsermanagement



 Sketch of an architecture

 Defined dependencies between business modules

Shopping CartUsermanagement



 Sketch of an architecture

 Technical layering

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE



 Sketch of an architecture

 Defined dependencies between technical layers

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE



 Sketch of an architecture

 Defined dependencies of business modules & technical layers

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE



 Sketch of an architecture

 Defined dependencies of business modules & technical layers

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE



 Sketch of an architecture

 Decoupling of technical layers (APIs, Interfaces)

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE



 Sketch of an architecture

 Limitation of the visibility of external dependencies per layer

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE

JAX-RSJSF

EJB

JPA



 Translation of architecture rules into the project structure

 Java language element: Package

com.buschmais.shop



 Translation of architecture rules into the project structure

 Java language element: Package

 Definition of business modules on „top level“

Shopping Cart
„com.buschmais.shop.cart“

Usermanagement
„com.buschmais.shop.user“



 Translation of architecture rules into the project structure

 Java language element: Package

 Technical layers

…shop.cart.ui

…shop.cart.rest

…shop.cart.logic

…shop.cart.persistence

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE



 Translation of architecture rules into the project structure

 Java language element: Package

 Technical layers

…shop.cart.ui

…shop.cart.rest

…shop.cart.logic.api

…shop.cart.logic.impl

…shop.cart.persistence.api

…shop.cart.persistence.impl

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE



 Translation of architecture rules into the project structure

 Definition/restriction of allowed dependencies?

 Not (yet) supported by Java

 Solution: using dependency
managment of the build system, 
e.g. Maven

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE



 Translation of architecture rules into the project structure

 Definition of dependencies using the build system…

 Lots of small modules

 Lack of control (changes of
build descriptors)

 Unwanted transitive
dependencies

 No feedback to the developers,
i.e. „You can‘t do that because…“

JSF-UI REST

BUSINESS LOGIC

PERSISTENCE



 Conventions, e.g. definition of naming rules, e.g.

 Package names

 api, spi, impl

 Suffixes for JPA elements

 *Entity, *Key

 Suffixes for EJBs

 *Bean, *MDB

 Location of classes/packages

 JPA entities in .model packages (persistence layer)

 JSF controller in .controller packages (UI layer)

 But how does all this work in practice?



 „Erosion“ starts at the first day of development!

 Constantly increasing number of rule violations

 Even with a one-man developer team…







 Erosion: some causes

 Fast growing complexity of applications

 Increasing amount and complexity of rules

 Project documentation is never up-to-date

 Different skill level of developers

 Different types of developers

 Time pressure („Hacks“)

 Broken windows…



Exploration And Verification Of Java Applications

Using A Graph Database



 Approach consisting of 3 steps



 Approach consisting of 3 steps

 1. Scan

 Parsing of the application and storing as raw data in a database



 Approach consisting of 3 steps

 1. Scan

 Parsing of the application and storing as raw data in a database

 2. Enhancement of raw data by CONCEPT queries

 Labeling of nodesAssignment of roles to Java elements

 Architectural concepts (e.g. modules, layers)

 Design concepts (e.g. API vs. implementation)

 Technical concepts (JPA Entities, EJBs, tests)

 Adding relationships

 class, package and module dependencies



 Approach consisting of 3 steps

 1. Scan

 Parsing of the application and storing as raw data in a database

 2. Enhancement of raw data by CONCEPT queries

 Labeling of nodesAssignment of roles to Java elements

 Architectural concepts (e.g. modules, layers)

 Design concepts (e.g. API vs. implementation)

 Technical concepts (JPA Entities, EJBs, tests)

 Adding relationships

 class, package and module dependencies

 3. Execution of CONSTRAINT queries

Queries to detect rule violation

 API classes which depend on implementation classes

 Message Driven Beans not having the name suffix MDB



 Concept query: Labeling JPA entities

@Entity
public class Person { …



 Concept query: Labeling JPA entities

@Entity
public class Person { …

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE



 Concept query: Labeling JPA entities

MATCH
(e:CLASS)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

WHERE
at.FQN ="javax.persistence.Entity"

RETURN

e.FQN as EntityName

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE



 Concept query: Labeling JPA entities

MATCH
(e:CLASS)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

WHERE
at.FQN ="javax.persistence.Entity"

SET
e:JPA:ENTITY

RETURN

e.FQN as EntityName Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA



 Concept query: Labeling JPA entities

MATCH
(e:CLASS)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

WHERE
at.FQN ="javax.persistence.Entity"

SET
e:JPA:ENTITY

RETURN

e.FQN as EntityName

 A concept is applicable if its query returns a result

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA



 Constraint query: Restrict JPA entity to “model” packages



 Constraint query: Restrict JPA entity to “model” packages

Person

TYPE CLASS

ENTITYJPA

user

PACKAGE

model

PACKAGE

CONTAINS

CONTAINS



 Constraint query: Restrict JPA entity to “model” packages

MATCH
(p:PACKAGE)-[:CONTAINS]->(e)

WHERE
e:JPA:ENTITY
AND NOT(p.NAME = 'model')

RETURN
e.FQN as EntityName

Person

TYPE CLASS

ENTITYJPA

user

PACKAGE

model

PACKAGE

CONTAINS

CONTAINS



 Constraint query: Restrict JPA entity to “model” packages

MATCH
(p:PACKAGE)-[:CONTAINS]->(e)

WHERE
e:JPA:ENTITY
AND NOT(p.NAME = 'model')

RETURN
e.FQN as EntityName

 A constraint is violated if its query returns a result

Person

TYPE CLASS

ENTITYJPA

user

PACKAGE

model

PACKAGE

CONTAINS

CONTAINS



 Concept query: Type dependencies

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA



 Concept query: Type dependencies

MATCH
(t:TYPE)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

CREATE UNIQUE

(t)-[:DEPENDS_ON]->(at)
RETURN

count(t)
as AnnotatedTypes

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA



 Concept query: Type dependencies

MATCH
(t:TYPE)-[:ANNOTATED_BY]->(a),
(a)-[:OF_TYPE]->(at:TYPE)

CREATE UNIQUE

(t)-[:DEPENDS_ON]->(at)
RETURN

count(t)
as AnnotatedTypes

Annotation

VALUE ANNOTATION

Person

TYPE CLASS

ANNOTATED_BY

javax.
persistence.

Entity

TYPE

OF_TYPE

ENTITYJPA

DEPENDS_ON



Exploration And Verification Of Java Applications

Using A Graph Database



 Homepage http://github.com/buschmais/jqassistant

 License: Apache Software License 2.0

 Milestone 1.0.0-M2

 Based on Neo4j (embedded)

 Tool for definition and validation of coding, design and
architecture rules.

 Scan of bytecode, property files, descriptors, etc.

 Re-usable rules in XML descriptors

 Cypher based queries

 Reporting with comprehensive violation messages

 Integration in build process

 Maven Plugin

http://github.com/buschmais/jqassistant


 Rule definitions

 Cypher queries specified in XML files…



 Rule definitions

 Cypher queries specified in XML files…

 …in a project directory (project/jqassistant), or…



 Rule definitions

 Cypher queries specified in XML files…

 …in a project directory (project/jqassistant), or…

 …as part of plugins

 Re-usable rules

 Technical concepts, e.g. JPA entities, EJBs, test methods, etc.

 Dependency concepts and constraints

 class and package dependencies

 cyclic package constraints

 Rules can depend on each other

 e.g. „package dependencies“ requires „type dependencies“

 jQAssistant resolves correct order and executes only required
rules



 Rule definitions: Concept



 Rule definitions: Concept
<jqa:jqassistant-rules xmlns:jqa="...">

<concept id="jpa2:Entity">

<description>Labels all types annotated with 
@javax.persistence.Entity with JPA and ENTITY.</description>

<cypher><![CDATA[

MATCH
(t:TYPE)-[:ANNOTATED_BY]->()-[:OF_TYPE]->(a:TYPE)

WHERE a.FQN="javax.persistence.Entity"

SET t:JPA:ENTITY

RETURN t AS jpaEntity

]]></cypher>

</concept>

</jqa:jqassistant-rules>



 Rule definitions: Concept
<jqa:jqassistant-rules xmlns:jqa="...">

<concept id="jpa2:Entity">

<description>Labels all types annotated with 
@javax.persistence.Entity with JPA and ENTITY.</description>

<cypher><![CDATA[

MATCH
(t:TYPE)-[:ANNOTATED_BY]->()-[:OF_TYPE]->(a:TYPE)

WHERE a.FQN="javax.persistence.Entity"

SET t:JPA:ENTITY

RETURN t AS jpaEntity

]]></cypher>

</concept>

</jqa:jqassistant-rules>



 Rule definitions: Concept
<jqa:jqassistant-rules xmlns:jqa="...">

<concept id="jpa2:Entity">

<description>Labels all types annotated with 
@javax.persistence.Entity with JPA and ENTITY.</description>

<cypher><![CDATA[

MATCH
(t:TYPE)-[:ANNOTATED_BY]->()-[:OF_TYPE]->(a:TYPE)

WHERE a.FQN="javax.persistence.Entity"

SET t:JPA:ENTITY

RETURN t AS jpaEntity

]]></cypher>

</concept>

</jqa:jqassistant-rules>



 Rule definitions: Constraint



 Rule definitions: Constraint
<jqa:jqassistant-rules xmlns:jqa="...">

<constraint id="JpaEntitiesInModelPackage">

<requiresConcept refId="jpa2:Entity"/>

<description>All JPA entities must be located in the 
packages named "model“.</description>

<cypher><![CDATA[

MATCH (p:PACKAGE)-[:CONTAINS]->(e)

WHERE e:JPA AND e:ENTITY AND NOT(p.FQN =~ ".*\.model)

RETURN

e AS jpaEntity

]]></cypher>

</constraint>

</jqa:jqassistant-rules>



 Rule definitions: Constraint
<jqa:jqassistant-rules xmlns:jqa="...">

<constraint id="JpaEntitiesInModelPackage">

<requiresConcept refId="jpa2:Entity"/>

<description>All JPA entities must be located in the 
packages named "model“.</description>

<cypher><![CDATA[

MATCH (p:PACKAGE)-[:CONTAINS]->(e)

WHERE e:JPA AND e:ENTITY AND NOT(p.FQN =~ ".*\.model)

RETURN

e AS jpaEntity

]]></cypher>

</constraint>

</jqa:jqassistant-rules>



 Rule definitions: Constraint
<jqa:jqassistant-rules xmlns:jqa="...">

<constraint id="JpaEntitiesInModelPackage">

<requiresConcept refId="jpa2:Entity"/>

<description>All JPA entities must be located in the 
packages named "model“.</description>

<cypher><![CDATA[

MATCH (p:PACKAGE)-[:CONTAINS]->(e)

WHERE e:JPA AND e:ENTITY AND NOT(p.FQN =~ ".*\.model)

RETURN

e AS jpaEntity

]]></cypher>

</constraint>

</jqa:jqassistant-rules>



 Rule definitions: Constraint
<jqa:jqassistant-rules xmlns:jqa="...">

<constraint id="JpaEntitiesInModelPackage">

<requiresConcept refId="jpa2:Entity"/>

<description>All JPA entities must be located in the 
packages named "model“.</description>

<cypher><![CDATA[

MATCH (p:PACKAGE)-[:CONTAINS]->(e)

WHERE e:JPA AND e:ENTITY AND NOT(p.FQN =~ ".*\.model)

RETURN

e AS jpaEntity

]]></cypher>

</constraint>

</jqa:jqassistant-rules>



 Rule definitions: Group



 Rule definitions: Group
<jqa:jqassistant-rules xmlns:jqa="...">

<group id="default">

<includeConstraint
refId="abstractness:ApiMustNotDependOnImplementation"/>

<includeConstraint
refId="JpaEntitiesInModelPackage"/>

<includeConstraint
refId="EjbLocatedInImplementationPackage"/>

<includeConstraint refId="TestClassNameHasTestSuffix"/>

<includeConstraint refId="dependency:TypeCycles"/>

<includeConstraint refId="dependency:ArtifactCycles"/>

</group>

</jqa:jqassistant-rules>



 Rule definitions: Group
<jqa:jqassistant-rules xmlns:jqa="...">

<group id="default">

<includeConstraint
refId="abstractness:ApiMustNotDependOnImplementation"/>

<includeConstraint
refId="JpaEntitiesInModelPackage"/>

<includeConstraint
refId="EjbLocatedInImplementationPackage"/>

<includeConstraint refId="TestClassNameHasTestSuffix"/>

<includeConstraint refId="dependency:TypeCycles"/>

<includeConstraint refId="dependency:ArtifactCycles"/>

</group>

</jqa:jqassistant-rules>



 Maven goals

 scan

 Scan the byte code

 available-rules

 List all available rules

 effective-rules

 List all rules which would be applied using current configuration

 analyze

 Execute analysis according to the effective rules

 report

 Create a report for maven sites

 server

 Run the embedded Neo4j server



 Plugin based and extensible

 jQAssistant is only a framework

 Plugins provide scanner and rules

 Java

 class and property file scanner

 dependency concepts and constraints (cycles)

 JPA2

 persistence descriptor scanner (persistence.xml)

 JPA entity concept

 EJB3

 concepts for EJB types and interfaces (local, remote)

 JUnit4

 Test methods and classes

 Ignored tests



Exploration And Verification Of Java Applications

Using A Graph Database



Exploration And Verification Of Java Applications

Using A Graph Database



 Plugins

 More scanners

 e.g. CDI

 Scanner for beans.xml

 Concepts for beans, injection points and producer, interceptors, 
delegates, …

 Rules, rules, rules

 Community?



 Visualization

 Heat maps, e.g. dependencies of packages or modules

 Tool integration

 Sonar (Work in progress)

 Gradle

 Jenkins

 JUnit: dynamic test suites

 Eclipse

On-The-Fly scan

 „Manual“ query execution

 Definable queries, e.g. impact analysis



 Graph Databases

 Ian Robinson, Jim Webber,
Emil Eifrem

 O'Reilly Media

 1. Auflage

 ISBN: 978-1449356262



 NoSQL Distilled: A Brief Guide 
to the Emerging World 
of Polyglot Persistence

 Pramodkumar J. Sadalage,
Martin Fowler

 Addison-Wesley Longman

 ISBN: 978-0321826626



 Hypermodelling - Next Level Software Engineering with 
Data Warehouses

http://accepted.hypermodelling.com/frey_magdeburg_dissertat
ion_hypermodelling_2013.pdf

 Oliver Gierke: Ooops, where did my architecture go?

http://www.slideshare.net/olivergierke/whoops-where-did-my-
architecture-go-10414858

http://accepted.hypermodelling.com/frey_magdeburg_dissertation_hypermodelling_2013.pdf
http://www.slideshare.net/olivergierke/whoops-where-did-my-architecture-go-10414858


 Raoul-Gabriel Urma: Expressive and Scalable Source Code 
Queries with Graph Databases [Paper]

http://urma.com/pdf/oopsla13.pdf

 Pavlo Baron: Graphlr, a ANTLR storage in Neo4j

http://github.com/pavlobaron/graphlr

 Michael Hunger: Class-Graph

http://github.com/jexp/class-graph

http://urma.com/pdf/oopsla13.pdf
http://github.com/pavlobaron/graphlr
http://github.com/jexp/class-graph


buschmais.de

facebook.com/buschmais

twitter.com/buschmais


